Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Brain ; 147(4): 1553-1570, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38128548

RESUMO

Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.


Assuntos
Transtorno do Espectro Autista , Aqueduto do Mesencéfalo/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X , Hidrocefalia , Criança , Humanos , Transtorno do Espectro Autista/genética , Fatores de Transcrição/genética , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Epigênese Genética , Proteínas do Olho/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Nat Commun ; 14(1): 7452, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978175

RESUMO

To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.


Assuntos
Doenças Vasculares , Malformações da Veia de Galeno , Humanos , Animais , Camundongos , Malformações da Veia de Galeno/genética , Malformações da Veia de Galeno/patologia , Células Endoteliais/patologia , Mutação , Transdução de Sinais/genética , Mutação de Sentido Incorreto , Proteínas Ativadoras de GTPase/genética , Receptores de Activinas Tipo II/genética , Proteína p120 Ativadora de GTPase/genética
3.
Trends Mol Med ; 29(12): 1059-1075, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802664

RESUMO

Chiari malformation type 1 (CM1) is the most common structural brain disorder involving the craniocervical junction, characterized by caudal displacement of the cerebellar tonsils below the foramen magnum into the spinal canal. Despite the heterogeneity of CM1, its poorly understood patho-etiology has led to a 'one-size-fits-all' surgical approach, with predictably high rates of morbidity and treatment failure. In this review we present multiplex CM1 families, associated Mendelian syndromes, and candidate genes from recent whole exome sequencing (WES) and other genetic studies that suggest a significant genetic contribution from inherited and de novo germline variants impacting transcription regulation, craniovertebral osteogenesis, and embryonic developmental signaling. We suggest that more extensive WES may identify clinically relevant, genetically defined CM1 subtypes distinguished by unique neuroradiographic and neurophysiological endophenotypes.


Assuntos
Malformação de Arnold-Chiari , Encefalopatias , Humanos , Malformação de Arnold-Chiari/genética , Malformação de Arnold-Chiari/complicações , Malformação de Arnold-Chiari/cirurgia , Forame Magno , Genética Humana , Imageamento por Ressonância Magnética
4.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126322

RESUMO

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Epilepsia do Lobo Temporal/cirurgia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estudos Retrospectivos , Hipocampo/patologia , Epilepsia/patologia
5.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993588

RESUMO

To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP ( RASA1 ) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10 -7 ). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 ( EPHB4 ) (p=1.22×10 -5 ), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1 , NOTCH1 , ITGB1 , and PTPN11 . ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.

6.
medRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993720

RESUMO

Importance: Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery. A few familial forms of congenital hydrocephalus (CH) have been identified, but the cause of most sporadic cases of CH remains elusive. Recent studies have implicated SMARCC1 , a component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, as a candidate CH gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, CH-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo . Objectives: The aims of this study are to (i) assess the extent to which rare, damaging de novo mutations (DNMs) in SMARCC1 are associated with cerebral ventriculomegaly; (ii) describe the clinical and radiographic phenotypes of SMARCC1 -mutated patients; and (iii) assess the pathogenicity and mechanisms of CH-associated SMARCC1 mutations in vivo . Design setting and participants: A genetic association study was conducted using whole-exome sequencing from a cohort consisting of 2,697 ventriculomegalic trios, including patients with neurosurgically-treated CH, totaling 8,091 exomes collected over 5 years (2016-2021). Data were analyzed in 2023. A comparison control cohort consisted of 1,798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents sourced from the Simons simplex consortium. Main outcomes and measures: Gene variants were identified and filtered using stringent, validated criteria. Enrichment tests assessed gene-level variant burden. In silico biophysical modeling estimated the likelihood and extent of the variant impact on protein structure. The effect of a CH-associated SMARCC1 mutation on the human fetal brain transcriptome was assessed by analyzing RNA-sequencing data. Smarcc1 knockdowns and a patient-specific Smarcc1 variant were tested in Xenopus and studied using optical coherence tomography imaging, in situ hybridization, and immunofluorescence microscopy. Results: SMARCC1 surpassed genome-wide significance thresholds in DNM enrichment tests. Six rare protein-altering DNMs, including four loss-of-function mutations and one recurrent canonical splice site mutation (c.1571+1G>A) were detected in unrelated patients. DNMs localized to the highly conserved DNA-interacting SWIRM, Myb-DNA binding, Glu-rich, and Chromo domains of SMARCC1 . Patients exhibited developmental delay (DD), aqueductal stenosis, and other structural brain and heart defects. G0 and G1 Smarcc1 Xenopus mutants exhibited aqueductal stenosis and cardiac defects and were rescued by human wild-type SMARCC1 but not a patient-specific SMARCC1 mutant. Hydrocephalic SMARCC1 -mutant human fetal brain and Smarcc1 -mutant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2 . Conclusions: SMARCC1 is a bona fide CH risk gene. DNMs in SMARCC1 cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)", characterized by cerebral ventriculomegaly, aqueductal stenosis, DD, and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodeling complex for human brain morphogenesis and provide evidence for a "neural stem cell" paradigm of human CH pathogenesis. These results highlight the utility of trio-based WES for identifying risk genes for congenital structural brain disorders and suggest WES may be a valuable adjunct in the clinical management of CH patients. KEY POINTS: Question: What is the role of SMARCC1 , a core component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, in brain morphogenesis and congenital hydrocephalus (CH)? Findings: SMARCC1 harbored an exome-wide significant burden of rare, protein-damaging de novo mutations (DNMs) (p = 5.83 × 10 -9 ) in the largest ascertained cohort to date of patients with cerebral ventriculomegaly, including treated CH (2,697 parent-proband trios). SMARCC1 contained four loss-of-function DNMs and two identical canonical splice site DNMs in a total of six unrelated patients. Patients exhibited developmental delay, aqueductal stenosis, and other structural brain and cardiac defects. Xenopus Smarcc1 mutants recapitulated core human phenotypes and were rescued by the expression of human wild-type but not patient-mutant SMARCC1 . Hydrocephalic SMARCC1 -mutant human brain and Smarcc1 -mutant Xenopus brain exhibited similar alterationsin the expression of key transcription factors that regulate neural progenitor cell proliferation. Meaning: SMARCC1 is essential for human brain morphogenesis and is a bona fide CH risk gene. SMARCC1 mutations cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)". These data implicate epigenetic dysregulation of fetal neural progenitors in the pathogenesis of hydrocephalus, with diagnostic and prognostic implications for patients and caregivers.

7.
Nat Med ; 29(3): 667-678, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36879130

RESUMO

Cerebral arachnoid cysts (ACs) are one of the most common and poorly understood types of developmental brain lesion. To begin to elucidate AC pathogenesis, we performed an integrated analysis of 617 patient-parent (trio) exomes, 152,898 human brain and mouse meningeal single-cell RNA sequencing transcriptomes and natural language processing data of patient medical records. We found that damaging de novo variants (DNVs) were highly enriched in patients with ACs compared with healthy individuals (P = 1.57 × 10-33). Seven genes harbored an exome-wide significant DNV burden. AC-associated genes were enriched for chromatin modifiers and converged in midgestational transcription networks essential for neural and meningeal development. Unsupervised clustering of patient phenotypes identified four AC subtypes and clinical severity correlated with the presence of a damaging DNV. These data provide insights into the coordinated regulation of brain and meningeal development and implicate epigenomic dysregulation due to DNVs in AC pathogenesis. Our results provide a preliminary indication that, in the appropriate clinical context, ACs may be considered radiographic harbingers of neurodevelopmental pathology warranting genetic testing and neurobehavioral follow-up. These data highlight the utility of a systems-level, multiomics approach to elucidate sporadic structural brain disease.


Assuntos
Cistos Aracnóideos , Multiômica , Humanos , Animais , Camundongos , Cistos Aracnóideos/diagnóstico por imagem , Cistos Aracnóideos/genética , Encéfalo/diagnóstico por imagem , Exoma/genética , Testes Genéticos
8.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
9.
Hum Genet ; 142(1): 21-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35997807

RESUMO

Lambdoid craniosynostosis (CS) is a congenital anomaly resulting from premature fusion of the cranial suture between the parietal and occipital bones. Predominantly sporadic, it is the rarest form of CS and its genetic etiology is largely unexplored. Exome sequencing of 25 kindreds, including 18 parent-offspring trios with sporadic lambdoid CS, revealed a marked excess of damaging (predominantly missense) de novo mutations that account for ~ 40% of sporadic cases. These mutations clustered in the BMP signaling cascade (P = 1.6 × 10-7), including mutations in genes encoding BMP receptors (ACVRL1 and ACVR2A), transcription factors (SOX11, FOXO1) and a transcriptional co-repressor (IFRD1), none of which have been implicated in other forms of CS. These missense mutations are at residues critical for substrate or target sequence recognition and many are inferred to cause genetic gain-of-function. Additionally, mutations in transcription factor NFIX were implicated in syndromic craniosynostosis affecting diverse sutures. Single cell RNA sequencing analysis of the mouse lambdoid suture identified enrichment of mutations in osteoblast precursors (P = 1.6 × 10-6), implicating perturbations in the balance between proliferation and differentiation of osteoprogenitor cells in lambdoid CS. The results contribute to the growing knowledge of the genetics of CS, have implications for genetic counseling, and further elucidate the molecular etiology of premature suture fusion.


Assuntos
Craniossinostoses , Camundongos , Animais , Craniossinostoses/genética , Craniossinostoses/metabolismo , Mutação , Transdução de Sinais/genética , Fatores de Transcrição/genética , Diferenciação Celular , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo
10.
Cells ; 11(19)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36231052

RESUMO

Autosomal-recessive cerebellar ataxias (ARCAs) are heterogeneous rare disorders mainly affecting the cerebellum and manifest as movement disorders in children and young adults. To date, ARCA causing mutations have been identified in nearly 100 genes; however, they account for less than 50% of all cases. We studied a multiplex, consanguineous Pakistani family presenting with a slowly progressive gait ataxia, body imbalance, and dysarthria. Cerebellar atrophy was identified by magnetic resonance imaging of brain. Using whole exome sequencing, a novel homozygous missense mutation ERCC8:c.176T>C (p.M59T) was identified that co-segregated with the disease. Previous studies have identified homozygous mutations in ERCC8 as causal for Cockayne Syndrome type A (CSA), a UV light-sensitive syndrome, and several ARCAs. ERCC8 plays critical roles in the nucleotide excision repair complex. The p.M59T, a substitution mutation, is located in a highly conserved WD1 beta-transducin repeat motif. In silico modeling showed that the structure of this protein is significantly affected by the p.M59T mutation, likely impairing complex formation and protein-protein interactions. In cultured cells, the p.M59T mutation significantly lowered protein stability compared to wildtype ERCC8 protein. These findings expand the role of ERCC8 mutations in ARCAs and indicate that ERCC8-related mutations should be considered in the differential diagnosis of ARCAs.


Assuntos
Ataxia Cerebelar , Ataxia Cerebelar/genética , Criança , Consanguinidade , Enzimas Reparadoras do DNA/genética , Humanos , Mutação de Sentido Incorreto/genética , Paquistão , Linhagem , Fatores de Transcrição/genética , Adulto Jovem
11.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379995

RESUMO

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Assuntos
Hidrocefalia , Animais , Fenômenos Biomecânicos , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Camundongos , Neurogênese/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma
12.
JAMA Dermatol ; 158(1): 16-25, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851365

RESUMO

IMPORTANCE: Ichthyoses are clinically and genetically heterogeneous disorders characterized by scaly skin. Despite decades of investigation identifying pathogenic variants in more than 50 genes, clear genotype-phenotype associations have been difficult to establish. OBJECTIVE: To expand the genotypic and phenotypic spectra of ichthyosis and delineate genotype-phenotype associations. DESIGN, SETTING, AND PARTICIPANTS: This cohort study recruited an international group of individuals with ichthyosis and describes characteristic and distinguishing features of common genotypes, including genotype-phenotype associations, during a 10-year period from June 2011 to July 2021. Participants of all ages, races, and ethnicities were included and were enrolled worldwide from referral centers and patient advocacy groups. A questionnaire to assess clinical manifestations was completed by those with a genetic diagnosis. MAIN OUTCOMES AND MEASURES: Genetic analysis of saliva or blood DNA, a phenotyping questionnaire, and standardized clinical photographs. Descriptive statistics, such as frequency counts, were used to describe the cases in the cohort. Fisher exact tests identified significant genotype-phenotype associations. RESULTS: Results were reported for 1000 unrelated individuals enrolled from around the world (mean [SD] age, 50.0 [34.0] years; 524 [52.4%] were female, 427 [42.7%] were male, and 49 [4.9%] were not classified); 75% were from the US, 12% from Latin America, 4% from Canada, 3% from Europe, 3% from Asia, 2% from Africa, 1% from the Middle East, and 1% from Australia and New Zealand. A total of 266 novel disease-associated variants in 32 genes were identified among 869 kindreds. Of these, 241 (91%) pathogenic variants were found through multiplex amplicon sequencing and 25 (9%) through exome sequencing. Among the 869 participants with a genetic diagnosis, 304 participants (35%) completed the phenotyping questionnaire. Analysis of clinical manifestations in these 304 individuals revealed that pruritus, hypohydrosis, skin pain, eye problems, skin odor, and skin infections were the most prevalent self-reported features. Genotype-phenotype association analysis revealed that the presence of a collodion membrane at birth (odds ratio [OR], 6.7; 95% CI, 3.0-16.7; P < .001), skin odor (OR, 2.8; 95% CI, 1.1-6.8; P = .02), hearing problems (OR, 2.9; 95% CI, 1.6-5.5; P < .001), eye problems (OR, 3.0; 95% CI, 1.5-6.0; P < .001), and alopecia (OR, 4.6; 95% CI, 2.4-9.0; P < .001) were significantly associated with TGM1 variants compared with other ichthyosis genotypes studied. Skin pain (OR, 6.8; 95% CI, 1.6-61.2; P = .002), odor (OR, 5.7; 95% CI, 2.0-19.7; P < .001), and infections (OR, 3.1; 95% CI, 1.4-7.7; P = .03) were significantly associated with KRT10 pathogenic variants compared with disease-associated variants in other genes that cause ichthyosis. Pathogenic variants were identified in 869 (86.9%) participants. Most of the remaining individuals had unique phenotypes, enabling further genetic discovery. CONCLUSIONS AND RELEVANCE: This cohort study expands the genotypic and phenotypic spectrum of ichthyosis, establishing associations between clinical manifestations and genotypes. Collectively, the findings may help improve clinical assessment, assist with developing customized management plans, and improve clinical course prognostication.


Assuntos
Ictiose Lamelar , Ictiose , Estudos de Coortes , Feminino , Genômica , Humanos , Ictiose/patologia , Ictiose Lamelar/genética , Masculino , Fenótipo
13.
Nat Med ; 27(12): 2165-2175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887573

RESUMO

Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases. Ppil4 depletion in vertebrate models causes intracerebral hemorrhage, defects in cerebrovascular morphology and impaired Wnt signaling. Wild-type, but not IA-mutant, PPIL4 potentiates Wnt signaling by binding JMJD6, a known angiogenesis regulator and Wnt activator. These findings identify a novel PPIL4-dependent Wnt signaling mechanism involved in brain-specific angiogenesis and maintenance of cerebrovascular integrity and implicate PPIL4 gene mutations in the pathogenesis of IA.


Assuntos
Encéfalo/irrigação sanguínea , Ciclofilinas/genética , Aneurisma Intracraniano/genética , Neovascularização Patológica/genética , Proteínas de Ligação a RNA/genética , Ciclofilinas/fisiologia , Humanos , Mutação , Proteínas de Ligação a RNA/fisiologia , Sequenciamento do Exoma , Via de Sinalização Wnt/fisiologia
14.
JAMA Neurol ; 78(8): 993-1003, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125151

RESUMO

Importance: Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non-East Asian individuals. Objective: To assess whether ultrarare de novo and rare, damaging transmitted variants with large effect sizes are associated with MMD risk. Design, Setting, and Participants: A genetic association study was conducted using whole-exome sequencing case-parent MMD trios in a small discovery cohort collected over 3.5 years (2016-2019); data were analyzed in 2020. Medical records from US hospitals spanning a range of 1 month to 1.5 years were reviewed for phenotyping. Exomes from a larger validation cohort were analyzed to identify additional rare, large-effect variants in the top candidate gene. Participants included patients with MMD and, when available, their parents. All participants who met criteria and were presented with the option to join the study agreed to do so; none were excluded. Twenty-four probands (22 trios and 2 singletons) composed the discovery cohort, and 84 probands (29 trios and 55 singletons) composed the validation cohort. Main Outcomes and Measures: Gene variants were identified and filtered using stringent criteria. Enrichment and case-control tests assessed gene-level variant burden. In silico modeling estimated the probability of variant association with protein structure. Integrative genomics assessed expression patterns of MMD risk genes derived from single-cell RNA sequencing data of human and mouse brain tissue. Results: Of the 24 patients in the discovery cohort, 14 (58.3%) were men and 18 (75.0%) were of European ancestry. Three of 24 discovery cohort probands contained 2 do novo (1-tailed Poisson P = 1.1 × 10-6) and 1 rare, transmitted damaging variant (12.5% of cases) in DIAPH1 (mammalian diaphanous-1), a key regulator of actin remodeling in vascular cells and platelets. Four additional ultrarare damaging heterozygous DIAPH1 variants (3 unphased) were identified in 3 other patients in an 84-proband validation cohort (73.8% female, 77.4% European). All 6 patients were non-East Asian. Compound heterozygous variants were identified in ena/vasodilator-stimulated phosphoproteinlike protein EVL, a mammalian diaphanous-1 interactor that regulates actin polymerization. DIAPH1 and EVL mutant probands had severe, bilateral MMD associated with transfusion-dependent thrombocytopenia. DIAPH1 and other MMD risk genes are enriched in mural cells of midgestational human brain. The DIAPH1 coexpression network converges in vascular cell actin cytoskeleton regulatory pathways. Conclusions and Relevance: These findings provide the largest collection to date of non-East Asian individuals with sporadic MMD harboring pathogenic variants in the same gene. The results suggest that DIAPH1 is a novel MMD risk gene and impaired vascular cell actin remodeling in MMD pathogenesis, with diagnostic and therapeutic ramifications.


Assuntos
Forminas/genética , Doença de Moyamoya/genética , Adulto , Idade de Início , Moléculas de Adesão Celular/genética , Criança , Pré-Escolar , Estudos de Coortes , Simulação por Computador , Exoma/genética , Feminino , Variação Genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Moyamoya/diagnóstico por imagem , Fenótipo , Análise de Sequência de RNA , População Branca , Sequenciamento do Exoma
15.
Clin Genet ; 100(2): 176-186, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33904160

RESUMO

We report the case of a patient with severe progressive epilepsy and peripheral neuropathy and a novel de novo inactivating variant (p.E79X) in Protein Kinase D1 (PKD1). Using CRISPR/Cas9, we engineered the homologous variant in mice and showed that in the homozygote mouse, it recapitulated the patient peripheral nerve hypermyelination pathology. The lethality of the homozygote mouse prevented us from performing an assessment of locomotor behavior. The mutant heterozygote mouse; however, exhibited a significant increase in kainate-induced seizure activity over wild-type mice, supporting the hypothesis that the PKD1 variant is a candidate for the cause of the patient epilepsy. Because PKD1 was previously identified in a kinomic screen as an interacting partner of the K-Cl cotransporter 3 (KCC3), and since KCC3 is involved in peripheral nerve disease and brain hyperexcitability, one possible mechanism of action of PKD1 in disease is through KCC3. We show that catalytically inactive PKD1 stimulates KCC3 activity, consistent with tonic relief of inhibitory phosphorylation. Our findings implicate a novel role for PKD1 in the human nervous system, and uncover a mechanism that could serve as a potential target to promote nervous system myelination.


Assuntos
Epilepsia/genética , Bainha de Mielina , Doenças do Sistema Nervoso Periférico/etiologia , Proteína Quinase C/genética , Animais , Criança , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oócitos/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Potássio/metabolismo , Proteína Quinase C/metabolismo , Teste de Desempenho do Rota-Rod , Convulsões/induzido quimicamente , Convulsões/genética , Simportadores/genética , Simportadores/metabolismo , Xenopus laevis
17.
iScience ; 23(10): 101552, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083721

RESUMO

Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associated de novo mutation (p.Cys188Trp) in the GABAA receptor Cl- channel γ-1 subunit (GABRG1) exhibited trigeminal mechanical allodynia and face pain behavior. Other TN probands harbored rare damaging variants in Na+ and Ca+ channels, including a significant variant burden in the α-1H subunit of the voltage-gated Ca2+ channel Cav3.2 (CACNA1H). These results provide exome-level insight into TN and implicate genetically encoded impairment of GABA signaling and neuronal ion transport in TN pathogenesis.

18.
Nat Med ; 26(11): 1754-1765, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077954

RESUMO

Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH.


Assuntos
Ventrículos Cerebrais/metabolismo , Predisposição Genética para Doença , Hidrocefalia/genética , Neurogênese/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Exoma/genética , Feminino , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/patologia , Masculino , Mutação/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma
19.
Am J Case Rep ; 21: e924527, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32997650

RESUMO

BACKGROUND Bartter syndrome is a rare genetic disease characterized by hypokalemia, metabolic alkalosis, and hyperreninemic hyperaldosteronism. Five different subtypes have been described based on the genetic defect identified. Bartter syndrome type II is caused by homozygous or compound heterozygous loss-of-function mutations in the KCNJ1 gene encoding ROMK. This subtype is typically described as a severe antenatal form of the disease, often presenting with polyhydramnios before childbirth. CASE REPORT Here, we describe the case of a 26-year-old man who presented with generalized body weakness and hypokalemia and was ultimately diagnosed with Bartter syndrome type II based on his clinical features coupled with the identification of a homozygous missense mutation in KCNJ1. CONCLUSIONS To the best of our knowledge, this is the fifth case of late-onset Bartter syndrome type II. Interestingly, the mutation identified in our patient has been previously described in patients with antenatal Bartter's Syndrome. The late presentation in our patient suggests a surprising degree of phenotypic variability, even in patients carrying the identical disease-causing mutation.


Assuntos
Síndrome de Bartter , Hipopotassemia , Canais de Potássio Corretores do Fluxo de Internalização , Adulto , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Feminino , Homozigoto , Humanos , Hipopotassemia/genética , Masculino , Mutação de Sentido Incorreto , Canais de Potássio Corretores do Fluxo de Internalização/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...